

Upstream Global Consultant

Drilling Automation is Underway: Insights from the Industry Roadmap

AADE Houston–Jan 30, 2020

Presenter: John de Wardt, CEng, FIMechE, Dist Member SPE President: DE WARDT AND CO Program Manager: DSA Roadmap / DSABOK Board Member: SPE DSATS Guest lecturer / External PhD advisor: Colorado School of Mines

Relevant background

I co-founded the Industry DSA Roadmap Initiative in 2013

I led this initiative as Program Manager for over 6 years

We reached out to 50 experts globally through 15 steering committee members

It cost over \$800,000 – we raised \$215,000 through industry JIP (20 companies) to partially offset

Affiliated with SPE / IADC / AUVSI / SwRI / Energitsics / OPC Foundation

I am taking the 'helicopter view'

Report has 14 Sections / 325 pages

Drilling data exhibits some key quality data issues

- Errors stack up sensor to data user
 - Sensor / installation / compensation / signal conversion / calculation / transmission
- Significant lack of meta data (data giving information about data)
 - Measurements have unknown quality
- Who here knows the true accuracy of their drilling data?

SPE 184741; SPE 189626; SPE 189636; SPE 139848

Pit volumes Pit volumes WOB Downhole vs Surface Weight on B t [WOB] Downhole vs Surface **WOB** Surface Weight on Bit (surface) Top Drive Torque **Top Drive Torque** -30% -10% 10% 20% -20% 0%

Drilling Data Errors

Is +/- 20% acceptable?

30%

Drilling Systems Automation Decision and Control Framework – construct for data flow

- Purdue Reference Model for Computer Integrated Manufacturing (1989)
- International Society of Automation ISA 95 standard defined for industrial application
- Relevant for DSA
- Bottom up mapping overview (examples)

Level 4 - Enter Well Proposal	prise Well Construc	Business-related activities needed to manage an operational								
	Control		Scheduling	Supply Chair Managemen	n t	organization				
Level 3 – Well Construction Operations Management. Well Design						Activities of work flow to product the desired end product				
	Drilling Process Management		Risk / Uncer Managemer	rtainty nt						
Level 2 – Well Construction Execution Management Drilling Process Physics / Models Operation & Equipment States						tivities monitoring & controlling				
Level 1 – Well Construction Machine Control Machine Control – Machine Sensors						tivities involved in sensing and manipulating				
Level 0 – Well	Construction			Actual physical processes						

Data sourcing and communication is an challenge

WITSML - Well-Site Information Transfer Standard Markup Language employed for transmitting technical data between organizations in the petroleum industry OPC UA - Open **Platforms** Communication Unified Architecture machine to machine communication protocol for industrial

automation

DDS – Data Distribution Service application connectivity standard

Automation is not all or nothing Humans will remain in the loop to various degrees

Mapping transition from manual through augmented to automated built upon huge depth of expertise & experience:

- 1. Sheridan et al, 1978
 - 10 levels of automation from manual to autonomous
- 2. Parasuramen et al, 2000
 - 4 cognitive functions for humans and automation
- 3. Save et al, 2014
 - Application matrix in European aviation automation industry initiative with pilots and air traffic control
- 4. DSA Roadmap adopted with permission

Levels of Automation Taxonomy [LOAT]

Supported Function	Information Acquisition	Α	Information Analysis	В	Decision and Action Selection	С	Action Implementation	D
Done by	Manually	A0	Memory analysis	B0	Human decision	C0	Manual control	D0
Humans	Supported by artifact	A1	Supported by artifact	B1	Supported by artifact	C1	Supported by artifact	D1
Supported by Automation	Low level automation support	A2	Low level automation support	B2 Automated decision C2 S support		Step-by-step action support	D2	
	Medium level automation support	A3	Medium level automation support		Rigid automation decision support	C3	Low-level support action execution	D3
	High level automation support	A4	High level automation support				High-level support action execution	D4
	Full automation support	A5	Full automation support	B5				
Done by Automation					Low level automatic decision making	C4	Low-level action sequence automation	D5
					High level automatic decision making	C5	Medium-level action sequence automation	D6
					Full automatic decision making	C6	High-level action sequence automation	D7
							Full automation of action sequence	D8

Key issues for transitioning to higher automation levels

Supported Function	Information Acquisition		A	Infor	mation A	nalysis	В	Decision and Act Selection	tion	С	Ir	Action nplementation	D
Done by	Manually			OI	ry analysis			uman decision				ial control	D0
Humans	Supported by artifac	Rec	Requires Decreasing Data Attribute Risk		orted by arl	/ art		upported by artifac				orted by artifact	D1
	Low level automation support				evel autom rt			utomated decision				by-step action ort	D2
Supported by Automation	Medium leve support	Attı R			, au	Revi	sed	gid automation cision support	Requires		es	evel support action ution	D3
	High level automatis			ہ۔ poly	evel autom rt	Compe	etency	y	Op	Operation		level support action ution	D4
	Full automation supp	ort	F	Full au	utomation :	Moc	lels		Und	certa	inty		
								w level automatic				evel action ence automation	D5
Done by Automation								el auto on making				el action عرب el action عرب	D6
							1	ull automatic decisi making	L		.qu	-level action lence automation	D7
											Full a sequ	automation of action	D8

Advisory directional drilling

SPE 191408

Supported Function	Information Acquisition	Α	Information Analysis	В	Decision and Action Selection	С	Action Implementation	D
Done by	Manually	A0	Memory analysis	B0	Human decision	C0	Manual control	D0
Humans	Supported by artifact	A1	Supported by artifact		Supported by artifact	C1	Supported by artifact	D1
	Low level automation support	A2	Low level automation support	B2	Automated decision support	C2	Step-by-step action support	D2
Supported by Automation	Medium level automation support	A3	Medium level automation support	B3	Rigid automation decision support	C3	Low-level support action execution	D3
	High level automation support	A4	High level automation support				High-level support action execution	D4
	Full automation support	A5	Full automation support	B5				
Done by Automation					Low level automatic decision making	C4	Low-level action sequence automation	D5
					High level automatic decision making	C5	Medium-level action sequence automation	D6
					Full automatic decision making	C6	High-level action sequence automation	D7
							Full automation of action sequence	D8

Automated directional drilling

Supported Function	Information Acquisition	Α	Information Analysis	В	Decision and Action Selection	С	Action Implementation	D
Done by	Manually	A0	Memory analysis	B0	Human decision	C0	Manual control	D0
Humans	Supported by artifact	A1	Supported by artifact	B1	Supported by artifact	C1	Supported by artifact	D1
	Low level automation support	A2	Low level automation support	B2	Automated decision support	C2	Step-by-step action support	D2
Supported by Automation	Medium level automation support	A3	Medium level automation support		Rigid automation decision support	C3	Low-level support action execution	D3
	High level automation support	A4	High level automation support				High-level support action execution	D4
	Full automation support	A5	Full automation support	B5				
					Low level automatic decision making	C4	Low-level action sequence automation	D5
Done by Automation					High level automatic decision making	C5	Medium-level action sequence automation	D6
					Full automatic decision making	C6	High-level action sequence automation	D7
							Full automation of action sequence	D8

Drilling is a complex, poorly organized collection of systems and sub systems

- Minimizing complexity impact requires an industry architecture
 - Currently a common architecture does not exist
- Interoperability is not natural
 - Proprietary is perceived as competitive advantage
- Improved interoperability will support uptake
 - Demonstrated in other industries (aerospace, automobiles, telecommunications, ..)
- Bottom up implementation is underway with sub systems
 - Miss opportunities unless fit into an industry architecture
- Top down approach provides holistic value delivery
 - Maximum value generation

Systems of Systems view

- Now automating Systems of Interest:
 - Rotary / hoist / BHA / drilling energy / Well profile
- Opportunity is to plan comprehensive top down automation

Derived from International Council on Systems Engineering Published in DSA Roadmap

Drilling Systems Automation brings value initially to the operator

- Improving consistency over multiple cycles
 tripping
- Reducing operational durations
 - drill a stand cycle time
 - improvement drilling rate of penetration
- Improving wellbore placement
 - automation higher frequency / lower latency than humans
 - connect to real time subsurface models for instantaneous geosteering
- Improving wellbore quality for lower production operating costs / downtime, increased production
 - lower tortuosity (e.g. Artificial Lift Systems)
 - reduced fluid drop out

Where next?

Pre-determinds - stable or predictable outcomes

- Sensors and processed data in drilling systems continue to evolve slowly from some very basic technologies
 - Manually measuring mud parameters intermittently
 - Initiatives are underway
- Data acquisition and analytics is moving up the maturity curve (slowly)
 Moore's law / lowering costs / advancing sensors
- Surface and downhole equipment are separate suppliers (typically)
 - Purchases of companies shifting but the dichotomy will remain
- Independent rig control systems
 - Rigs own their systems and their systems are not consistent across the fleet
 - Incentive to be the platform for automated systems

Uncertainties - unstable or unpredictable outcomes

- Downhole telemetry capability, cost and value
 - Low data rates / high latency versus high data rate / low latency?
 - Automate remotely downhole or automate through surface control loops
- Multiple sub systems of automation versus integrated system
 - Single entity / collaborators take lead?
 - Integration and interoperability happen or not?
 - Risks from unintended consequences of independent sub systems?
- Asset obsolescence
 - Replace current assets with assets designed to incorporate automation?
 - Cost constrained business versus innovators with funding?
- Financial rewards
 - Going to the operators will business models change?
 - Will the investors in the technology earn the returns (now is competitive advantage)?

Drilling systems automation is advancing rapidly

www.DSARoadmap.org

DSA Roadmap Report – 325 pages

LINK • New State • Websites • Articles • Articles • Approved • Papers • Approved • Articles • Approved • DSA knowledge Seekers • Organizations

Portal to DSA Sources

DSA Roadmap 'in-house' interactive workshop is now available – contact jdewardt@dewardt.com

Thank you for listening

Thank you to AADE for this opportunity to present

jdewardt@dewardt.com

+1 970 879 3103